THE ACETOLYSIS OF CONSTRAINED CYCLOHEXYL TOSYLATES¹

C. W. Jefford, J. Gunsher and B. Waegell² Chemistry Department, Temple University, Philadelphia, Pa. 19122

(Received 29 June 1965; **in revised form 2 August 1965)** Recently³ we have examined $3,3,5,5$ -tetramethylcyclohexanone (I) and bicyclo[3.2.1]octanone-3 (II) as models for the operation of the Reflex Effect.⁴ As a continuation of this investigation we Were interested in the solvolysis **of** the tosylates derived from I and II. Accordingly, we have prepared exo-3 and endo-3-bicyclo[3.2.1]octyl tosylates (III and IV) and 3,3,5,5-tetramethylcyclohexyl tosylate (V) and studied their acetolyses.⁵ The kinetic data are assembled in Table 1.

III $X = OTs$ IV $X = OTs$ V $X = OTs$ IIIa $X = OH$ IVa $X = OH$ Va $X = OH$ K = Hydrogen in all cases

3405

TABLE 1

Acetolysis Rates of Constrained Cyclohexyl p-Toluenesulfonates

ated rates

However, in order to evaluate the observed rate constants, knowledge of the ground state conformations of the tosylates is required. The steric effect of the ethane bridge and the two pairs of geminal methyl groups could generate boat-formed cyclohexane moieties, especially in the case of IV and V.

As can be seen from Table 2, the chemical shifts and vicinal coupling constants of the tertiary carbinyl proton K in the alcohols corresponding to III - IV, viz., IIIa -Va, are invariant with temperature.⁶ Moreover, the mul-

TABLE 2

Chemical Shifts and Coupling Constants of Substituted Cyclohexanols, 0° - 120 6

tipllcities indicate that the cyclohexans moiety is locked firmly in the chair conformation. Therefore, by extension, the toeylate configurations in III - V are as depicted.

The acetolysis rate at 25° of tetramethylcyclohexyl tosylate (V) is about the same as that of cyclohexyl tosylate (VI).⁷ Both 3-endo and 3-exo-bicyclo[3.2.1]octyl tosylate are one hundred, and ten times faster respectively than VI. Both these rate enhancements are quantitatively compatible with steric acceleration due to the ethane bridge.⁸

It is especially significant that the endo tosylate IV acetolyses faster than the exo (III) by a factor of ten. Brown has proposed that the rate of solvolysis of exo-2-norbornyl p-bromobenzenesulfonate is 'normal', whereas that of the endo isomer is uncommonly slow due to "steric hindrance

to ionizationⁿ.⁹ Since models and the n.m.r. data indicate that III and IV resemble geometrically exo- and endo-2-norbornyl tosylate, it would appear that the aforementioned proposal, if true, must constitute a special case, as it clearly does not apply to the order of the difference in rate demonstrated by exo- and endo-3-bicyclo[3.2.1]octyl tosylates (III and IV).

Analysis¹⁰ of the composition of the products formed from the acetolysis of III, IV and V is particularly informative $(\text{Fig. 1}).^{11}$ The formation of endo as well as exo-

Figure 1. Products formed from III, IV and V on acetolysis¹¹

acetates from the endo tosylate (IV) indicates that there may be some degree of solvolytic epimerization of IV. 12 Nevertheless, the predominance of the exo acetate undoubtedly originates from the backside attack of solvent on $IV.¹³$ It is remarkable that in the case of the exo tosylate (III) the

substituted product is exclusively the endo acetate. Brown has attributed the predominant formation of exo product on solvolysis of exo-2-norbornyl p-bromobenzenesulfonate to "steric hindrance to endo substitution". 9,14 This interpretation is at variance with the stereochemical result of the solvolysis of exo-3-bicyclo[3.2.1]octyl tosylate (III), the endo side of which appears to be just as hindered as that of the 2-norbornyl system.

Acknowledgements

The first author is indebted to Temple University and the donors to the Petroleum Research Fund, administered by the American Chemical Society, for support of this work. The last author wishes to thank the C.N.R.S., France for financial assistance.

References

- $L₁$ To be regarded as Part VI of a series entitled "The Stereochemistry of the Bicyclo[3.2.1]octane System." For Part V see C. W. Jefford, S. Mahajan, J. Gunsher and B. Waegell, Tetrahedron Letters, No.28, 2333 (1965).
- $2.$ Visiting Lecturer for the Summer Session, 1964 on leave from the Institut de Chimie, Strasbourg, France.
- a) C. W. Jefford and B. Waegell, Tetrahedron Letters, 3. No. 28, 1981 (1963).
	- b) B. Waegell and C. W. Jefford, Bull. Soc. chim.France, 844 (1964).
- 4. a) C. Sandris and G. Ourisson, Bull. Soc. chim. France, 1524 (1958).
- b) B. Waegell and G. Ourisson, Bull. Soc. chim. France, **495,** 496, **503 0963).**
- 5. All compounds reported herein gave acceptable elementel analyses.
- 6. The alcohols IIIa - Va were investigated **as** approrimately 10% solutions in carbon tetrachloride at 60 Mc. **on a.** Varian Associates model A-60 spectrometer. A variable temperature controller (model V 6040) and probe were used for the temperature measurements between 0° - 120°. Jaa signifies the vicinal coupling constant of axial proton K and its axial neighbour; e designates an equatorially disposed proton.
- **7.** The acetolytic rate constant at 25° of cyclohexyl tosylate is 3.79×10^{-8} sec.⁻¹ (cf. S. Winstein and N.J. Holness, J. Amer. Chem. Soc., 77, 5562 (1955)).
- **8.** The axial tosylate group in IV experiences ateric interaction with the ethane bridge of an estimated 5.0 kcal./mole (cf. the 1,5-diaxial methylhydroxyl interaction of 2.4 kcal./mole; E. L. Kliel and H. Haubenstock, J. Org. Ohem., 26, **3504 0961)).** However, not all this strain is relieved in the transition state so that the observed 100 fold rate enhancement is not unreasonable:
- **9.** H. C. Brown, special Publication No. 16, The Chemical Society, London, 1962 pp. 140-57, 176-78. H. C. Brown et al., J. Amer. Chem. Soc., 86, 1246,5008 (1964) and intervening papers.
- **10.** The identity of the products was established through

their n.m.r. spectra and by comparison with authentic compounds.

- 11. Bar product analysis, the tosylatee were acetolyaed at 90" for about 20 half-lives.
- 12. IV may dissociate to an intimate ion pair which could suffer internal return to its exo isomer, III. Alternatively, IV could undergo SN2 attack by free tosylate ion to form III. These possibilities are under investigation.
- 13. There is no doubt that the solvolyeis of 'normal' secondary sulfonates proceeds by solvent attack in an SN2 type process. (H. Weiner and R. A. Sneen, J. Amer. Chem. Soc., 87, 287, 292 (1965)).
- 14. H. C. Brown, K. J. Morgan and F. J. Chloupek, J. Amer. Chem. Soc., 87, 2137 (1965), footnote 73.